An α-moving total least squares fitting method for measurement data

Author:

Gu Tianqi1,Hu Chenjie1,Tang Dawei2ORCID,Lin Shuwen1,Luo Tianzhi3

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

2. Centre for Precision Technologies, University of Huddersfield, Huddersfield, UK

3. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China

Abstract

The Moving Least Squares (MLS) and Moving Total Least Squares (MTLS) method are widely used for approximating discrete data in many areas such as surface reconstruction. One of the disadvantages of MLS is that it only considers the random errors in the dependent variables. The MTLS method achieves a better fitting accuracy by taking into account the errors of both dependent and independent variables. However, both MLS and MTLS suffer from a low fitting accuracy when applied to the measurement data with outliers. In this work, an improved method named as α-MTLS method is proposed, which uses the Total Least Square (TLS) method based on singular value decomposition (SVD) to fit the nodes in the influence domain and introduces a geometric characteristic parameter α to associated with the abnormal degree of nodes. The generated fitting points are used to construct the parameter and quantify the abnormal degree of the nodes. The node with the largest parameter value is eliminated and the remaining nodes are used to determine the local coefficients. By trimming only one node per influence domain, multiple outliers of measurement data can be effectively handled. There is no need to set threshold values subjectively or assign weights which avoids the negative influence of manual operation. The performance of the improved method is demonstrated by numerical simulations and measurement experiment. It is shown that the α-MTLS method can effectively reduce the influence of the outliers and thus has higher fitting accuracy and greater robustness than that of the MLS and MTLS method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3