Experimental investigation of end milling of titanium alloys with polycrystalline diamond tools

Author:

Pan Wencheng1,Kamaruddin Adam1,Ding Songlin1,Mo John1

Affiliation:

1. School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia

Abstract

The low thermal conductivity and high chemical reactivity of titanium alloys result in a short tool life in the milling process. This article investigates the performance of polycrystalline diamond tools in the end milling of titanium alloys (Ti6Al4V) by using small customized cutting tools. The relationship between cutting force and cutting parameters was analysed; tool life, tool wear, and causes that lead to tool failure were discussed. To analyse tool wear and cutting temperatures, residual chemical components on the cutting tool were examined with X-ray diffraction method, while surface integrity of cutting tools was inspected based on the images taken by the scanning electrical microscope. Finite element analysis models were developed to simulate the initiation of cracks under different loading cycles. Through cutting experiments, it was found that brittle chipping and fatigue were the two major modes of failure, and feed rate was the dominant factor that causes large cutting forces.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital twin approach for machining with robotic manipulator;Proceedings of the 2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning;2024-06-28

2. Investigating drilling efficiency: a study on indexable centerless drilling of Ti-6Al-4 V alloy;The International Journal of Advanced Manufacturing Technology;2024-06-06

3. Investigating Drilling Efficiency: A Study on Indexable Centerless Drilling of Ti-6Al-4V Alloy;2024-02-20

4. The machinability of titanium alloy thin-wall parts in cooling minimum quantity lubrication (CMQL) environments;The International Journal of Advanced Manufacturing Technology;2023-10-19

5. Multi-channel electrical discharge machining of titanium alloy Ti-6Al-4V with semiconductor electrodes;Journal of Physics: Conference Series;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3