The machinability of titanium alloy thin-wall parts in cooling minimum quantity lubrication (CMQL) environments

Author:

Wu Ge,Mao Xuanyu,Pan Wencheng,Li Guangxian,Ding SonglinORCID

Abstract

AbstractThe machining of thin-wall components made of titanium alloys is challenging because the poor machinability of the material leads to severe problems such as accelerated tool wear and poor surface quality, while the weak rigidity of the thin-wall structure results in unavoidable vibration and surface form errors. To address these issues, this paper investigated the mechanisms and performance of cooling minimum quantity lubrication (CMQL) in milling titanium thin-wall parts. To verify the efficiency of CMQL, different cooling/lubrication strategies, including conventional flood cooling, minimum quantity lubrication (MQL) and CMQL with different temperature levels, were investigated. The cutting force, tool wear state, chip formation, surface integrity, and surface form errors were compared and analysed in detail. The experiment results show that MQL is inadequate at higher spindle speeds due to its ineffective cooling capacity and weakened lubrication ability. In contrast, CMQL has demonstrated its feasibility and superiority in milling titanium thin-wall parts under all conditions. The outcomes indicate that a lower temperature level of CMQL is advantageous to producing better wear resistance and lower thermomechanical loads, and the CMQL (− 15 ºC) machining environment can remarkably improve the overall machining performance and control the surface form errors of the machined thin-wall parts. At the spindle speed of 3000 rpm, the surface roughness measured under CMQL (− 15 °C) condition is reduced by 16.53% and 23.46%, the deflection value is decreased by 54.74% and 36.99%, while the maximum thickness error is about 53.51% and 20.56% smaller in comparison to flood cooling and MQL machining. In addition, CMQL is an economical and sustainable cooling/lubrication strategy; the outcomes of this work can provide the industry with useful guidance for high-quality machining of thin-wall components.

Funder

Australian Research Council

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3