Experimental and computational study of tones occurring with a coaxial nozzle

Author:

Zaman KBMQ1,Milanovic I2,Fagan AF3,Miller CJ4

Affiliation:

1. Inlets & Nozzles Branch, NASA Glenn Research Center, Cleveland, OH, USA

2. Department of Mechanical Engineering, University of Hartford, West Hartford, CT, USA

3. Optics & Photonics Branch, NASA Glenn Research Center, Cleveland, OH, USA

4. Acoustics Branch, NASA Glenn Research Center, Cleveland, OH, USA

Abstract

The source of audible tones occurring with a coaxial nozzle is explored experimentally as well as computationally. The hardware is comprised of an inner and an outer nozzle, without a center-body, that are held together by a set of four struts. With increasing jet Mach number ( Mj), first a tone occurred at about 2550 Hz around Mj = 0.06. At higher Mj, a tone at 5200 Hz dominated the noise spectra. The corresponding non-dimensional frequency, based on the effective thickness of the inner nozzle lip and jet exit velocity, turned out to be about 0.2, a value characteristic of Karman vortex shedding. Thus, vortex shedding from the inner nozzle lip could be linked to the tones. From a comparison of acoustic wavelengths and nozzle dimensions, as well as locations of the pressure nodes and anti-nodes from the computational results, it was inferred that the vortex shedding excited one-quarter-wave resonances within the divergent sections of the nozzle. Such resonances in the inner and the outer nozzles produced the higher and the lower frequency tones, respectively.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3