Noise from a Jet Discharged into a Duct and its Suppression

Author:

Zaman K.B.M.Q.1,Clem M. M.1,Fagan A. F.1

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH 44135

Abstract

This study addresses unwanted high intensity noise sometimes encountered in engine test facilities. Model-scale experiments are conducted for a round jet discharged into a cylindrical duct. In most cases, the unwanted noise is found to be due to longitudinal resonance modes of the duct excited by the random turbulence of the jet. When the ‘preferred mode’ frequency of the jet matches a duct resonant frequency there can be a locked-in ‘super-resonance’ accompanied by a high intensity tone or ‘howl’. Various techniques are explored for suppression of the unwanted noise. Tabs placed on the ends of the duct are found ineffective; so are longitudinal fins placed inside the duct. Arod inserted perpendicular to the flow (‘howl stick’) is also found generally ineffective; however, it is effective when there is a super-resonance. By far the most effective suppression is achieved by a wire-mesh screen placed at the end of the duct. The screen not only eliminates the super-resonance but also the duct mode spectral peaks. Apparently the screen works by dampening the velocity fluctuations at the pressure node and thereby weakening the resonant condition.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3