Numerical study on edge tone with compressible direct numerical simulation: Sound intensity and jet motion

Author:

Iwagami Sho1,Tabata Ryoya1,Kobayashi Taizo2,Hattori Yuji3,Takahashi Kin’ya14ORCID

Affiliation:

1. Department of Mechanical Information Science and Technology, Kyushu Institute of Technology, Fukuoka, Japan

2. Research Institute for Information Technology, Kyushu University, Fukuoka, Japan

3. Institute of Fluid Science, Tohoku University, Miyagi, Japan

4. Department of Physics and Information Technology, Kyushu Institute of Technology, Fukuoka, Japan

Abstract

A two-dimensional model of the edge tone is studied by a highly accurate and reliable method of direct numerical simulation of the compressible Navier-Stokes equations, and used to verify key features observed in previous experimental and numerical studies, and to discover new features related to the jet motion and the edge tone generation mechanism. The first and second modes of the edge tone that are numerically reproduced agree well with Brown’s equation. In the mode transition region, dynamical mode transition is observed at a fixed jet velocity. For both first and second modes, the pressure distributions are antisymmetric with respect to the edge plate, and the sound intensity is proportional to the fifth power of the jet velocity. These results are consistent with the edge tone being radiated from a dipole-like source. Spatial profiles of the velocity and the velocity variance of the oscillating jet are also investigated for each mode over a range of the jet velocity including the mode transition regime. The amplitude of the velocity oscillation becomes constant with increasing jet velocity, while a measure of the amplitude of the velocity variance profile, which is introduced to characterize the strength of the jet fluctuation and named the ’fluctuation strength’, is proportional to the third power of the jet velocity. Some properties of the fluctuation strength correspond to properties of the sound intensity, including the first mode having larger amplitude than the second mode, and the way of deviating from the power law at smaller values of jet velocity and in the mode transition region. It is proposed that the third-power law exhibited by behavior of the fluctuation strength could be related to the increase of the skewness observed in the velocity profile with increase of jet velocity, and a model calculation is used to support this proposal.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3