5G Edge Computing Access Node Selection Algorithm Based on Energy Efficiency and Delay

Author:

Hu Wenjian1ORCID,Guo Siyan1ORCID,He Liping1ORCID,Wang Lin1ORCID,Yuan Yubao2ORCID

Affiliation:

1. State Grid Shijiazhuang Power Supply Company, Shijiazhuang, Hebei 050200, China

2. Shijiazhuang Colin Yunneng Information Technology co., Ltd., Shijiazhuang, Hebei 050200, China

Abstract

In order to address the dissipation of energy efficiency in 5G edge computing, and the problem of network delay, better improve the quality of user service, considering the data aggregation delay while improving the network energy efficiency. The author proposes a 5G edge computing access node selection algorithm based on energy efficiency and delay; through the energy efficiency and delay balanced data collection mechanism (EEDBDG), a new dynamic tree is used to organize the network topology, eliminating the hot zone problem; nodes dynamically choose routes and take turns acting as the root of the tree, which collects data and communicates directly with the base station. At the same time, three data collection strategies are proposed for different latency and energy efficiency requirements: delay optimal algorithm (EEDBDG-D), energy efficiency optimal algorithm (EEDBDG-E), and energy efficiency delay balance algorithm (EEDBDG-M). Experimental results show that, when the communication radius of nodes is limited, EEDBDG balances the energy consumption of nodes, prolongs the network life time, and shows outstanding performance in energy saving and time saving. Compared with GSEN, in the best case, the network lifetime of EEDBDG-E is increased by 72%, and the convergence delay of EEDBDG-D is reduced by 74%. Conclusion. The algorithm can effectively reduce the energy dissipation and delay of edge computing.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3