Acoustics measurements of military-style supersonic beveled nozzle jets with interior corrugations

Author:

Powers Russell W1,McLaughlin Dennis K1

Affiliation:

1. Department of Aerospace Engineering, The Pennsylvania State University, University Park, USA

Abstract

Increasingly powerful and noisy military aircraft have generated the need for research leading to the development of supersonic jet noise reduction devices. The hot, high speed supersonic jets exhausting from military aircraft during takeoff present a most challenging problem. The present study extends prior research on two methods of noise reduction. The first is the internal nozzle corrugations pioneered by Seiner et al. and the second is the beveled exit plane explored most recently by Viswanathan. A novel research idea of creating fluidic corrugations similar to the nozzle corrugations has been initiated by Penn State. To further the understanding and analysis of the fluidic corrugations, the present study focuses on the flow field and acoustic field of nozzles with two, three, and six conventional, hardwalled corrugations. The effect of the combination of the internal corrugations with a beveled nozzle is explored. The results show that significant noise reductions of over 3 dB of the mixing noise and the broadband shock-associated noise can be achieved. The combination of the beveled nozzle and the internal nozzle corrugations showed that there is less azimuthal dependence of the acoustic field than for the purely beveled nozzle. The combination nozzle was shown to reduce the noise over a wider range of polar angles and operating conditions than either the purely beveled nozzle or the purely corrugated nozzle.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3