Nano Zero-Valent Aluminum (nZVAl) Preparation, Characterization, and Application for the Removal of Soluble Organic Matter with Artificial Intelligence, Isotherm Study, and Kinetic Analysis

Author:

Mahmoud Ahmed S1ORCID,Farag Rabie S2,Elshfai Maha M1,Mohamed Lameas A1,Ragheb Safaa M1

Affiliation:

1. Sanitary and Environmental Institute (SEI), Housing and Building National Research Center (HBRC), Giza, Egypt

2. Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, Egypt

Abstract

Zero-valent metals proved high reactivity to adsorb and degrade various contaminants removal. The chemically prepared nZVAl was characterized using UV-Vis spectrum, X-ray diffraction (XRD), and scanning electron microscope (SEM). This investigation explores the adsorption effect of nZVAl powder toward soluble organic compounds exemplified by chemical oxygen demand (COD) standard solution. The effect of different operating parameters was studied to identify the best removal conditions. All variable and covariable data were introduced to build statistical models. The effect of the operating parameter was studied at different pH (3-10), nZVAl dosages (0.1-0.8 g), at different times (5-120 minutes), stirring rate (50-400 RPM), and initial COD concentration (100-800 mg/L). The obtained results displayed that nZVAl is effective in the removal of standard COD solutions, where the removal percentages were 56% and 96% for 800 ± 18.0 and 100 ± 11.8 mg/L COD, respectively, at 10 minutes after using nZVAl dry dosage 0.6 g/L, pH 8, and rate 100 rpm. Also, the effect of nZVAl on other wastewater contaminants removal was studied and compared with Egyptian law for draining wastewater into nonfresh water (drainage-lakes-ponds) No. 48 of 1982 limits. The results of adsorption isotherm and kinetic model of COD fitted well to Freundlich isotherm and pseudo second order, respectively. Nonlinear artificial intelligence neural network (ANN) importance data agree with linear response surface methodologies (RSM) in simulating the adsorption of COD onto nZVAl indicating that the most significant coverable is adsorbent dose. Finally, this study appropriates using nZVAl in highly contaminated wastewater rather than other chemical and biological processes.

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3