Predicting Cu(II) Adsorption from Aqueous Solutions onto Nano Zero-Valent Aluminum (nZVAl) by Machine Learning and Artificial Intelligence Techniques

Author:

Sadek Ahmed H.12ORCID,Fahmy Omar M.3ORCID,Nasr Mahmoud45ORCID,Mostafa Mohamed K.3ORCID

Affiliation:

1. Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City 12578, Egypt

2. Sanitary and Environmental Engineering Research Institute, Housing and Building National Research Center (HBRC), Dokki, Giza 11511, Egypt

3. Faculty of Engineering and Technology, Badr University in Cairo (BUC), Cairo 11829, Egypt

4. Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt

5. Sanitary Engineering Department, Faculty of Engineering, Alexandria University, P.O. Box 21544, Bab Sharqi 21526, Egypt

Abstract

Predicting the heavy metals adsorption performance from contaminated water is a major environment-associated topic, demanding information on different machine learning and artificial intelligence techniques. In this research, nano zero-valent aluminum (nZVAl) was tested to eliminate Cu(II) ions from aqueous solutions, modeling and predicting the Cu(II) removal efficiency (R%) using the adsorption factors. The prepared nZVAl was characterized for elemental composition and surface morphology and texture. It was depicted that, at an initial Cu(II) level (Co) 50 mg/L, nZVAl dose 1.0 g/L, pH 5, mixing speed 150 rpm, and 30 °C, the R% was 53.2 ± 2.4% within 10 min. The adsorption data were well defined by the Langmuir isotherm model (R2: 0.925) and pseudo-second-order (PSO) kinetic model (R2: 0.9957). The best modeling technique used to predict R% was artificial neural network (ANN), followed by support vector regression (SVR) and linear regression (LR). The high accuracy of ANN, with MSE < 10−5, suggested its applicability to maximize the nZVAl performance for removing Cu(II) from contaminated water at large scale and under different operational conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3