Heavy metal removal performance of capacitive deionization technology studied by machine learning

Author:

Dian Xiao-minORCID,Hao Jia-yuan,Zhang Zheng-ao,Chen ZheORCID,Yao Lei

Abstract

Abstract Capacitive deionization (CDI) technology is utilized for efficient treatment of industrial wastewater, characterized by low energy consumption and environmental protection. In order to comprehend the correlation between key experimental parameters and the electrosorption capacity (EC) of heavy metals in CDI technology, this paper employs a genetic algorithm (GA) to optimize a backpropagation artificial neural network (BPANN) for predicting the EC of CDI technology for heavy metal ions, with the characteristics of electrode materials converted into numerical characteristics for further analysis. Compared to the BPANN, the optimized GABPANN model demonstrates superior predictive accuracy. It achieves automatic adjustment of the hidden layer structure, neuron count, and transfer functions. Furthermore, the grey relational analysis indicates that the electrode material and the initial pH value of the solution are pivotal in determining the EC of heavy metal ions. This underscores the efficacy of machine learning (ML) algorithms in forecasting the nonlinear dynamics of CDI systems and elucidates the influence of individual parameters on the efficacy of heavy metal removal.

Funder

National Natural Science Foundation of China

Wuhan Institute of Technology

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3