Relationships between Meteorological and Particulate Matter Concentrations (PM2.5 and PM10) during the Haze Period in Urban and Rural Areas, Northern Thailand

Author:

Sirithian Duanpen1,Thanatrakolsri Pantitcha1

Affiliation:

1. Faculty of Public Health, Thammasat University, Lampang, Thailand

Abstract

Meteorological parameters play a crucial role in the ambient air quality of urban and rural environments. This study aims to investigate the relationship between meteorological parameters (including temperature, relative humidity, and wind speed) and the concentrations of PM2.5 and PM10 in the urban area and the rural area, northern Thailand during the haze period (January to April) from 2016 to 2020. Statistical analyses of the Spearman-Rank correlation coefficient and the multivariate gaussian regression were used to investigate the relationships. The secondary data of ambient PM2.5 and PM10 concentration and meteorological parameters were acquired from the Thai Pollution Control Department. The measurements are obtained using the Beta Ray attenuation method. The results showed that approximately 24% to 65% of daily average PM2.5 concentrations in the urban area over the study period exceeded Thailand’s National Ambient Air Quality Standards. The average PM2.5/PM10 ratios in the urban and the rural areas over the haze period were 0.69 and 0.66, respectively. Our analysis established a significant correlation between atmospheric temperature ( r = 0.624) and relative humidity ( r = −0.722) with the concentrations of PM2.5 and PM10. In both areas, PM2.5 and PM10 concentrations were also positively correlated with temperature. In contrast, relative humidity was significantly related with the decrease of PM2.5 and PM10 concentrations. However, wind speed does not affect PM2.5 and PM10 concentrations. Additionally, the daily backward trajectories using the hybrid-single particle Lagrangian integrated trajectory model also demonstrated air mass movement in March mostly came from the southwesterly direction, which moved through the highlands, the large biomass burned areas, upwind neighboring provinces, and transboundary transports before reaching the air monitoring stations. Our findings improve the understanding of particulate matter pollution and meteorological patterns during annual haze periods in the urban and rural areas. We expect the output of this study can help improve existing haze mitigation measures for improving the prediction accuracy of air pollution under variable meteorological parameters.

Funder

Thammasat University

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3