Quantifying Impacts of Future Climate on the Crop Water Requirement, Growth Period, and Drought on the Agricultural Watershed, in Ethiopia

Author:

Abraham Tesfalem1ORCID,Muluneh Alemayehu1

Affiliation:

1. Hawassa University, Ethiopia

Abstract

Quantifying the influence of climate change on the crop growth period, water requirement, and drought conditions is essential for integrated crop production system planning. In this study, the effects of climate models from the Coupled Model Inter-comparison Product (CMIP5) on Crop Water Requirement (CWR), Length of Growth Period (LGP), and drought conditions were quantified for Lake Hawassa watershed in Ethiopia. In this study, two regional climate models were selected that showed better performance on the evaluation criteria after applying a quantile mapping bias correction procedure. The impact analysis was conducted for two Representative Concentration Pathways (RCPs) (RCP4.5 and RCP 8.5). Drought analysis was performed using the standardized anomalies of rainfall (S-index). The future growing season of the area is projected to be between April 15 and May 1 on average for all years. The total crop water requirement was projected to increase to a value of 3,258.7 mm on average under both the RCP4.5 and RCP8.5 scenarios for all the stages at the end of 2080s from its baseline value of 3,180.4 mm. In addition, the drought forecast analysis shows extreme drought with S-index values <−1.6 in the 2050s and 2080s under RCP 8.5. Of all the time periods, the 2050s recorded the smallest number of years (10 out of 30 years) with a positive S-index value, indicating projected precipitation shortages during these time periods under RCP 8.5. With this result, the combined impacts of climate change on crop production factors are expected to be high in the region. The results suggest an early warning for the study region considering low economic and technological development as in many developing parts of the world. Therefore, understanding the future changes in climate variables and their impacts can be an important input for developing a better plan for adaptation and mitigation measures.

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3