Quantifying the Regional Water Balance of the Ethiopian Rift Valley Lake Basin Using an Uncertainty Estimation Framework

Author:

Abraham Tesfalem,Liu Yan,Tekleab SirakORCID,Hartmann AndreasORCID

Abstract

Abstract. In Ethiopia more than 80 % of big freshwater lakes are located in the Rift Valley Lake Basin (RVLB), serving over 15 million people a multipurpose water supply. The basin covers an area of 53,035 km2, and most of the catchments recharging these lakes are ungauged and their water balance is not well quantified, hence limiting the development of appropriate water resource management strategies. Prediction for ungauged basins (PUB) has demonstrated its effectiveness in hydro-climatic data-rich regions. However, these approaches are not well evaluated in climatic data-limited conditions and the consequent uncertainty is not adequately quantified. In this study we use the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to simulate streamflow at a regional scale using global precipitation and potential evapotranspiration products as forcings. We develop and apply a Monte-Carlo scheme to estimate model parameters and quantify uncertainty at 16 catchments in the basin where gauging stations are available. Out of these 16, we use the 14 most reliable catchments to derive the best regional regression model. We use three different strategies to extract possible parameter sets for regionalization by correlating the best calibration parameters, the best validation parameters, and parameters that give the most stable predictions with catchment properties that are available throughout the basin. A weighting scheme in the regional regression accounts for parameter uncertainty in the calibration. A spatial cross-validation is applied multiple times to test the quality of the regionalization and to estimate the regionalization uncertainty. Our results show that, other than the commonly used best-calibrated parameters, the best parameter sets of the validation period provide the most robust estimates of regionalized parameters. We then apply the regionalized parameter sets to the remaining 35 ungauged catchments in the RVLB to provide regional water balance estimations, including quantifications of regionalization uncertainty. The uncertainties of elasticities from the regionalization in the ungauged catchments are higher than those obtained from the simulations in the gauged catchments. With these results, our study provides a new procedure to use global precipitation and evapotranspiration products to predict and evaluate streamflow simulation for hydro-climatically data-scarce regions considering uncertainty. This procedure enhances the confidence to understand the water balance of under-represented regions like ours and supports the planning and development of water resources.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3