Evaluating the Performance of AquaCrop Model for Potato Production Under Deficit Irrigation

Author:

Wale Aemro1,Dessie Mekete2,Kendie Hailu3ORCID

Affiliation:

1. Sekota Dry-Land Agricultural Research Center, Sekota, Ethiopia

2. Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia

3. Amhara Agricultural Research Institute, Bahir Dar, Ethiopia

Abstract

Crop modeling is a powerful tool for estimating yield and water use efficiency, and it plays an important role in determining water management strategies. Under the condition of scarce water supply and drought, deficit irrigation can lead to greater economic gains by maximizing yield per unit of water. Studies have shown that deficit irrigation significantly increased yield, crop evapotranspiration, and water use efficiency as compared to full irrigation requirement. However, this approach requires precise knowledge of crop response to water as drought tolerance varies considerably by growth stage, species and cultivars. This study was conducted in Lasta district, for two successive years to evaluate the effects of water shortage on potato production and water use efficiency, as well as to test the AquaCrop model for potato-producing areas. The irrigation water levels for potatoes were 100%, 75%, and 50% of crop evapotranspiration (ETc). Six treatments were arranged using a randomized complete block design. Climate, soil, and crop data were calibrated using observed weather parameters, and measured crop parameters conducted in the 2018/19 growing season. The model was validated using the observed data conducted in the 2019/20 growing season. The calibration of the model revealed a good fit for canopy cover (CC) with a coefficient of determination ( R2) = .98, Root mean square error (RMSE) = 9.6%, Nash-Sutcliffe efficiency ( E) = 0.92, index of agreement ( d) = 0.98, and coefficient of residual moss (CRM) = −0.07, and good prediction for biomass ( R2 = .98, RMSE = 1.8 t ha−1, E = 0.96, d = 0.99, CRM = −0.13). Similarly, the validation result showed good fit for CC by 100% water application at development and mid growth season and a 75% water applied at the other stages ( R2 = .98, RMSE = 9.4%, E = 0.94, d = 0.98, CRM = −0.12). The AquaCrop model is simple to use, requires fewer input data, and has a high level of simulation precision, making it a useful tool for forecasting crop yield under deficit irrigation and water management to increase agricultural water efficiency in data-scarce areas.

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3