Towards the development of a soft manipulator as an assistive robot for personal care of elderly people

Author:

Ansari Yasmin1,Manti Mariangela1,Falotico Egidio1,Mollard Yoan2,Cianchetti Matteo1,Laschi Cecilia1

Affiliation:

1. The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy

2. Flowers Lab, Inria, France

Abstract

Manipulators based on soft robotic technologies exhibit compliance and dexterity which ensures safe human–robot interaction. This article is a novel attempt at exploiting these desirable properties to develop a manipulator for an assistive application, in particular, a shower arm to assist the elderly in the bathing task. The overall vision for the soft manipulator is to concatenate three modules in a serial manner such that (i) the proximal segment is made up of cable-based actuation to compensate for gravitational effects and (ii) the central and distal segments are made up of hybrid actuation to autonomously reach delicate body parts to perform the main tasks related to bathing. The role of the latter modules is crucial to the application of the system in the bathing task; however, it is a nontrivial challenge to develop a robust and controllable hybrid actuated system with advanced manipulation capabilities and hence, the focus of this article. We first introduce our design and experimentally characterize its functionalities, which include elongation, shortening, omnidirectional bending. Next, we propose a control concept capable of solving the inverse kinetics problem using multiagent reinforcement learning to exploit these functionalities despite high dimensionality and redundancy. We demonstrate the effectiveness of the design and control of this module by demonstrating an open-loop task space control where it successfully moves through an asymmetric 3-D trajectory sampled at 12 points with an average reaching accuracy of 0.79 cm ± 0.18 cm. Our quantitative experimental results present a promising step toward the development of the soft manipulator eventually contributing to the advancement of soft robotics.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3