A new path planning method based on concave polygon convex decomposition and artificial bee colony algorithm

Author:

Li Zhaoying1ORCID,Zhang Zhao1,Liu Hao1,Yang Liang1

Affiliation:

1. School of Astronautics, Beihang University, Beijing, People’s Republic of China

Abstract

Free space algorithms are kind of graphics-based methods for path planning. With previously known map information, graphics-based methods have high computational efficiency in providing a feasible path. However, the existing free space algorithms do not guarantee the global optimality because they always search in one connected domain but not all the possible connected domains. To overcome this drawback, this article presents an improved free space algorithm based on map decomposition with multiple connected domains and artificial bee colony algorithm. First, a decomposition algorithm of single-connected concave polygon is introduced based on the principle of concave polygon convex decomposition. Any map without obstacle is taken as single-connected concave polygon (the convex polygon map can be seen as already decomposed and will not be discussed here). Single concave polygon can be decomposed into convex polygons by connecting concave points with their visible vertex. Second, decomposition algorithm for multi-connected concave polygon (any map with obstacles) is designed. It can be converted into single-connected concave polygon by excluding obstacles using virtual links. The map can be decomposed into several convex polygons which form multiple connected domains. Third, artificial bee colony algorithm is used to search the optimal path in all the connected domains so as to avoid falling into the local minimum. Numerical simulations and comparisons with existing free space algorithm and rapidly exploring random tree star algorithm are carried out to evaluate the performance of the proposed method. The results show that this method is able to find the optimal path with high computational efficiency and accuracy. It has advantages especially for complex maps. Furthermore, parameter sensitivity analysis is provided and the suggested values for parameters are given.

Funder

Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3