Dynamic modeling and adaptive fuzzy terminal sliding mode controller with nonlinear observer of a 2-(PUU)2R hybrid mechanism

Author:

Zhang Xing1ORCID,Mu Dejun23,Wang Hongrui1

Affiliation:

1. Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, China

2. Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, China

3. Key Laboratory of Advanced Forging and Stamping Technology and Science of Ministry of National Education, Yanshan University, Qinhuangdao, China

Abstract

This article proposes a new spatial 2-(PUU)2R hybrid mechanism that can perform the three degrees of freedom translation and one degree of freedom rotation and presents an analysis of the dynamics of the mechanism. An adaptive fuzzy terminal sliding mode controller with nonlinear observer for the hybrid mechanism is proposed to achieve a precise trajectory tracking, which could be utilized in solving the problems of the hybrid mechanism caused by model uncertainties, varying payloads, and external disturbances. Firstly, through the interrelation between the constraints, the 6 × 6 Jacobian matrix and 6 × 6 × 6 Hessian matrix for the mechanism are derived. Furthermore, dynamic modeling is established based on the virtual work principle, through which the characteristics of dynamic modeling can be proved. To achieve high-precision position tracking, a nonlinear observer was introduced to feed into the terminal sliding mode control which had improved the mechanism’s ability to resist the external disturbances. In addition, the chattering caused by the terminal sliding mode control was eliminated by approximating the switching gain with the usage of adaptive fuzzy logic in a finite time. Finally, a series of numerical simulations are carried out to prove the validity of the proposed approach, and the results verify better robustness and higher precision for the trajectory tracking than proportional–integral–derivative and sliding mode control.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formulation of unified kinematics for overconstrained Schönflies parallel mechanism using vectorial algebra;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-21

2. Unified formulas of constrained Jacobian and Hessian matrices for 3T1R overconstrained parallel mechanisms;Mechanics Based Design of Structures and Machines;2021-01-11

3. Derivation of General Acceleration and Hessian Matrix of Kinematic Limbs in Parallel Manipulator by Extended Skew-Symmetric Matrixes;Archives of Computational Methods in Engineering;2020-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3