Affiliation:
1. Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, Hefei University of Technology, Anhui, China
2. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, Anhui, China
Abstract
Visual simultaneous localization and mapping (SLAM) is well-known to be one of the research areas in robotics. There are many challenges in traditional point feature-based approaches, such as insufficient point features, motion jitter, and low localization accuracy in low-texture scenes, which reduce the performance of the algorithms. In this article, we propose an RGB-D SLAM system to handle these situations, which is named Point-Line Fusion (PLF)-SLAM. We utilize both points and line segments throughout the process of our work. Specifically, we present a new line segment extraction method to solve the overlap or branch problem of the line segments, and then a more rigorous screening mechanism is proposed in the line matching section. Instead of minimizing the reprojection error of points, we introduce the reprojection error based on points and lines to get a more accurate tracking pose. In addition, we come up with a solution to handle the jitter frame, which greatly improves tracking success rate and availability of the system. We thoroughly evaluate our system on the Technische Universität München (TUM) RGB-D benchmark and compare it with ORB-SLAM2, presumably the current state-of-the-art solution. The experiments show that our system has better accuracy and robustness compared to the ORB-SLAM2.
Funder
special fund for basic scientific research in central colleges and universities
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献