Design of a robust tracking controller for a nonholonomic mobile robot based on sliding mode with adaptive gain

Author:

Azzabi Ameni1ORCID,Nouri Khaled1

Affiliation:

1. Laboratory of Advanced Systems, Tunisia Polytechnic School, La Marsa, Tunisia

Abstract

This article propounds addressing the design of a sliding mode controller with adaptive gains for trajectory tracking of unicycle mobile robots. The dynamics of this class of robots are strong, nonlinear, and subject to external disturbance. To compensate the effect of the unknown upper bounded external disturbances, a robust sliding mode controller based on an integral adaptive law is proposed. The salient feature of the developed controller resides in taking into account that the system is MIMO and the upper bound of disturbances is not priori known. Therefore, we relied on an estimation of each perturbation separately for each subsystem. Hence, the proposed controller provides a minimum acceptable errors and bounded adaptive laws with minimum of chattering problem. To complete the goal of the trajectory tracking, we apply a kinematic controller that takes into account the nonholonomic constraint of the robot. The stability and convergence properties of the proposed tracking dynamic and kinematic controllers are analytically proved using Lyapunov stability theory. Simulation results based on a comparative study show that the proposed controllers ensure better performances in terms of good robustness against disturbances, accuracy, minimum tracking errors, boundness of the adaptive gains, and minimum chattering effects.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Parameters Identification of a Two-Wheel Drive Differential Mobile Robot with a Caster Wheel;2024 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2024-04-27

2. Path planning and tracking of wheeled mobile robot: using firefly algorithm and kinematic controller combined with sliding mode control;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-03-16

3. An Optimal Robust Trajectory Tracking Control Strategy for the Wheeled Mobile Robot;International Journal of Control, Automation and Systems;2024-01-18

4. A Constrained Fuzzy Control for Robotic Systems;IEEE Access;2024

5. Obstacle-circumventing adaptive control of a four-wheeled mobile robot subjected to motion uncertainties;Frontiers of Mechanical Engineering;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3