Design on electrohydraulic servo driving system with walking assisting control for lower limb exoskeleton robot

Author:

Wang Buyun12ORCID,Liang Yi12ORCID,Xu Dezhang12,Wang Zhihong2ORCID,Ji Jing2

Affiliation:

1. School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, China

2. Research and Development Department, AHPU Institute of Technology Robotic Industry, Wuhu, China

Abstract

According to the characteristics of human gait and the requirements of power assistance, locomotive mechanisms and electrohydraulic servo driving are designed on a lower limb exoskeleton robot, in which the miniaturization and lightweight of driving system are realized. The kinematics of the robot is analyzed and verified via the typical movements of the exoskeleton. In this article, the simulation on the power of joints during level walking was analyzed in ADAMS 2016, which is a multibody simulation and motion analysis software. Motion ranges and driving strokes are then optimized. A proportional integral derivative (PID) control method with error estimation and pressure compensation is proposed to satisfy the requirements of joints power assistance and comply with the motion of human lower limb. The proposed method is implemented into the exoskeleton for assisted walking and is verified by experimental results. Finally, experiments show that the tracking accuracy and power-assisted performance of exoskeleton robot joints are improved.

Funder

Natural science research of major program of Universities in Anhui Province, China

National Natural Science Foundation of China

scientific research foundation of education department of anhui province of china

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3