A Systematic Review of Low-Cost Actuator Implementations for Lower-Limb Exoskeletons: a Technical and Financial Perspective

Author:

Slucock T.

Abstract

AbstractA common issue with many commercial rehabilitative exoskeletons and orthoses are that they can be prohibitively expensive for an average individual to afford without additional financial support. Due to this a user may have limited to the usage of such devices within set rehabilitation sessions as opposed to a continual usage. The purpose of this review is therefore to find which actuator implementations would be most suitable for a simplistic, low-cost powered orthoses capable of assisting those with pathologic gait disorders by collating literature from Web of Science, Scopus, and Grey Literature. In this systematic review paper 127 papers were selected from these databases via the PRISMA guidelines, with the financial costs of 25 actuators discovered with 11 distinct actuator groups identified. The review paper will consider a variety of actuator implementations used in existing lower-limb exoskeletons that are specifically designed for the purpose of rehabilitating or aiding those with conditions inhibiting natural movement abilities, such as electric motors, hydraulics, pneumatics, cable-driven actuators, and compliant actuators. Key attributes such as technical simplicity, financial cost, power efficiency, size limitations, accuracy, and reliability are compared for all actuator groups. Statistical findings show that rotary electric motors (which are the most common actuator type within collated literature) and compliant actuators (such as elastic and springs) would be the most suitable actuators for a low-cost implementation. From these results, a possible actuator design will be proposed making use of both rotary electric motors and compliant actuators.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3