Convolutional neural network target detection in hyperspectral imaging for maritime surveillance

Author:

Freitas Sara1ORCID,Silva Hugo1,Almeida José Miguel1,Silva Eduardo1

Affiliation:

1. INESC TEC Centre for Robotics and Autonomous Systems, Instituto Superior de Engenharia do Porto, Porto, Portugal

Abstract

This work addresses a hyperspectral imaging system for maritime surveillance using unmanned aerial vehicles. The objective was to detect the presence of vessels using purely spatial and spectral hyperspectral information. To accomplish this objective, we implemented a novel 3-D convolutional neural network approach and compared against two implementations of other state-of-the-art methods: spectral angle mapper and hyperspectral derivative anomaly detection. The hyperspectral imaging system was developed during the SUNNY project, and the methods were tested using data collected during the project final demonstration, in São Jacinto Air Force Base, Aveiro (Portugal). The obtained results show that a 3-D CNN is able to improve the recall value, depending on the class, by an interval between 27% minimum, to a maximum of over 40%, when compared to spectral angle mapper and hyperspectral derivative anomaly detection approaches. Proving that 3-D CNN deep learning techniques that combine spectral and spatial information can be used to improve the detection of targets classification accuracy in hyperspectral imaging unmanned aerial vehicles maritime surveillance applications.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object detection in optical imaging of the Internet of Things based on deep learning;PeerJ Computer Science;2023-12-11

2. Hyperspectral Target Detection Methods Based on Statistical Information: The Key Problems and the Corresponding Strategies;Remote Sensing;2023-08-01

3. Target Detection in Hyperspectral Remote Sensing Image: Current Status and Challenges;Remote Sensing;2023-06-21

4. Deep unfolding for hyper sharpening using a high-frequency injection module;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

5. Multi-Scenario Target Detection using Neural Networks on Hyperspectral Imagery;2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS);2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3