Affiliation:
1. INESC TEC Centre for Robotics and Autonomous Systems, Instituto Superior de Engenharia do Porto, Porto, Portugal
Abstract
This work addresses a hyperspectral imaging system for maritime surveillance using unmanned aerial vehicles. The objective was to detect the presence of vessels using purely spatial and spectral hyperspectral information. To accomplish this objective, we implemented a novel 3-D convolutional neural network approach and compared against two implementations of other state-of-the-art methods: spectral angle mapper and hyperspectral derivative anomaly detection. The hyperspectral imaging system was developed during the SUNNY project, and the methods were tested using data collected during the project final demonstration, in São Jacinto Air Force Base, Aveiro (Portugal). The obtained results show that a 3-D CNN is able to improve the recall value, depending on the class, by an interval between 27% minimum, to a maximum of over 40%, when compared to spectral angle mapper and hyperspectral derivative anomaly detection approaches. Proving that 3-D CNN deep learning techniques that combine spectral and spatial information can be used to improve the detection of targets classification accuracy in hyperspectral imaging unmanned aerial vehicles maritime surveillance applications.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献