Affiliation:
1. School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
Abstract
This article investigates the three-dimensional trajectory tracking control problem for an underactuated autonomous underwater vehicle in the presence of parameter perturbations and external disturbances. An adaptive robust controller is proposed based on the velocity control strategy and adaptive integral sliding mode control algorithm. First, the desired velocities are developed using coordinate transformation and the backstepping method, which is the necessary velocities for autonomous underwater vehicle to track the time-varying desired trajectory. The bioinspired neurodynamics is used to smooth the desired velocities, which effectively avoids the jump problem of the velocity and simplifies the derivative calculation. Then, the dynamic control laws are designed based on the adaptive integral sliding mode control to drive the underactuated autonomous underwater vehicle to sail at the desired velocities. At the same time, the auxiliary control laws and the adaptive laws are introduced to eliminate the influence of parameter perturbations and external disturbances, respectively. The stability of the control system is guaranteed by the Lyapunov theorem, which shows that the system is asymptotically stable and all tracking errors are asymptotically convergent. At the end, numerical simulations are carried out to demonstrate the effectiveness and robustness of the proposed controller.
Funder
Fundamental Research Funds for the Central Universities of China
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献