Collision avoidance planning for unmanned surface vehicle based on eccentric expansion

Author:

Song Lifei1,Chen Zhuo1,Dong Zaopeng1ORCID,Xiang Zuquan1,Mao Yunsheng1,Su Yiran2,Hu Kai3

Affiliation:

1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan, People’s Republic of China

2. The University of Texas at Austin, Austin, TX, USA

3. China Ship Development and Design Center, Wuhan, People’s Republic of China

Abstract

The International Regulations for Preventing Collisions at Sea (COLREGS) specify certain navigation rules for ships at risk for collision. Theoretically, the safety of unmanned surface vehicles and traffic boats would be guaranteed when they comply with the COLREGS. However, if traffic boats do not comply with the demands of the convention, thereby increasing the danger level, then adhering to the COLREGS may be dangerous for the unmanned surface vehicle. In this article, a dynamic obstacle avoidance algorithm for unmanned surface vehicles based on eccentric expansion was developed. This algorithm is used to solve the possible failure of collision avoidance when the unmanned surface vehicle invariably obeys the COLREGS during the avoidance process. An obstacle avoidance model based on the velocity obstacle method was established. Thereafter, an eccentric expansion operation on traffic boats was proposed to ensure a reasonable balance between safety and the rules of COLREGS. The expansion parameters were set according to the rules of COLREGS and the risk level of collision. Then, the collision avoidance parameters were calculated based on the aforementioned motion model. With the use of MATLAB and Unity software, a semi-physical simulation platform was established to perform the avoidance simulation experiment under different situations. Results show the validity, reliability and intellectuality of the algorithm. This research can be used for intelligent collision avoidance of unmanned surface vehicle and other automatic driving ships.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3