Affiliation:
1. Research Center of Intelligent System and Robot, Chongqing University of Posts and Telecommunications, Chongqing, China
2. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
Abstract
At present, the application of mobile robots is more and more extensive, and the movement of mobile robots cannot be separated from effective navigation, especially path exploration. Aiming at navigation problems, this article proposes a method based on deep reinforcement learning and recurrent neural network, which combines double net and recurrent neural network modules with reinforcement learning ideas. At the same time, this article designed the corresponding parameter function to improve the performance of the model. In order to test the effectiveness of this method, based on the grid map model, this paper trains in a two-dimensional simulation environment, a three-dimensional TurtleBot simulation environment, and a physical robot environment, and obtains relevant data for peer-to-peer analysis. The experimental results show that the proposed algorithm has a good improvement in path finding efficiency and path length.
Funder
Common Key Technological Innovation Specialities of Key Industries of Chongqing Tongnan District Science and Technology Commission
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献