Accurate moving object segmentation in unconstraint videos based on robust seed pixels selection

Author:

Zhang Wenlong12ORCID,Sun Xiaoliang12ORCID,Yu Qifeng12

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China

2. Hunan Provincial Key Laboratory of Image Measurement and Vision Navigation, Changsha, China

Abstract

Due to the clutter background motion, accurate moving object segmentation in unconstrained videos remains a significant open problem, especially for the slow-moving object. This article proposes an accurate moving object segmentation method based on robust seed selection. The seed pixels of the object and background are selected robustly by using the optical flow cues. Firstly, this article detects the moving object’s rough contour according to the local difference in the weighted orientation cues of the optical flow. Then, the detected rough contour is used to guide the object and the background seed pixel selection. The object seed pixels in the previous frame are propagated to the current frame according to the optical flow to improve the robustness of the seed selection. Finally, we adopt the random walker algorithm to segment the moving object accurately according to the selected seed pixels. Experiments on publicly available data sets indicate that the proposed method shows excellent performance in segmenting moving objects accurately in unconstraint videos.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3