An Intelligent Moving Object Segmentation Using Hybrid IFCM-CSS Clustering Model

Author:

Veera Raghavulu Vivaram1ORCID,Prasad Ande2

Affiliation:

1. Computer Science and Engineering, N.B.K.R. Institute of Science & Technology, Vidyanagar, Andhra Pradesh 524413, India

2. Computer Science and Engineering, Vikrama Simhapuri University, Kakutur, Nellore, Andhra Pradesh 524324, India

Abstract

In this study, a novel hybrid deep clustering approach is proposed for the effective moving object segmentation. Initially, the data is collected, and the keyframe selection is performed using the threshold-based Kennard–Stone method. Then, the preprocessing step involves noise filtering using bilateral wavelet thresholding and binary color conversion. The blob detection is performed using normalized Laplacian of Gaussian. Finally, the segmentation of moving objects is performed using a hybrid clustering approach called improved fuzzy C-mean (IFCM) clustering with chaotic salp swarm (CSS) optimization algorithm (Hybrid IFCM-CSS). The overall evaluation is done in MATLAB. The performance of the hybrid IFCM-CSS is compared to other approaches based on some measures. The proposed Hybrid IFCM-CSS achieves the highest precision of 0.971, using the SBM-RGBD dataset.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3