Hand–eye calibration and grasping pose calculation with motion error compensation and vertical-component correction for 4-R(2-SS) parallel robot

Author:

Zhang Qian1,Gao Guo-Qin1ORCID

Affiliation:

1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China

Abstract

Due to motion constraint of 4-R(2-SS) parallel robot, it is difficult to calculate the translation component of hand–eye calibration based on the existing model solving method accurately. Additionally, the camera calibration error, robot motion error, and invalid calibration motion poses make it difficult to achieve fast and accurate online hand–eye calibration. Therefore, we propose a hand–eye calibration method with motion error compensation and vertical-component correction for 4-R(2-SS) parallel robot by improving the existing eye-to-hand model and solving method. Firstly, the eye-to-hand model of single camera is improved and the robot motion error in the improved model is compensated to reduce the influence of camera calibration error and robot motion error on model accuracy. Secondly, the vertical-component of hand–eye calibration is corrected based on vertical constraint between calibration plate and end effector in parallel robot to calculate the pose and motion error in calibration of 4-R(2-SS) parallel robot accurately. Thirdly, the nontrivial solution constraint of eye-to-hand model is constructed and adopted to remove invalid calibration motion poses and plan calibration motion. Finally, the proposed method was verified by experiments with a fruit sorting system based on 4-R(2-SS) parallel robot. Compared with random motion, the existing model, and solving method, the average time of online calibration based on planned motion decreases by 29.773 s and the average error of calibration based on the improved model and solving method decreases by 151.293. The proposed method can improve the accuracy and efficiency of hand–eye calibration of 4-R(2-SS) parallel robot effectively and further realize accurate and fast grasping.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3