Affiliation:
1. Center for Advanced Aerospace Technologies (CATEC), La Rinconada, Sevilla, Spain
2. Department of System Engineering and Automation, University of Seville, Seville, Spain
Abstract
This article presents an enhanced version of the Monte Carlo localization algorithm, commonly used for robot navigation in indoor environments, which is suitable for aerial robots moving in a three-dimentional environment and makes use of a combination of measurements from an Red,Green,Blue-Depth (RGB-D) sensor, distances to several radio-tags placed in the environment, and an inertial measurement unit. The approach is demonstrated with an unmanned aerial vehicle flying for 10 min indoors and validated with a very precise motion tracking system. The approach has been implemented using the robot operating system framework and works smoothly on a regular i7 computer, leaving plenty of computational capacity for other navigation tasks such as motion planning or control.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献