Affiliation:
1. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, China
Abstract
An accurate hierarchical stereo matching method is proposed based on continuous 3D plane labeling of superpixel for rover’s stereo images. This method can infer the 3D plane label of each pixel combined with the slanted-patch matching strategy and coarse-to-fine constraints, which is especially suitable for large-scale scene matching with low-texture or textureless regions. At every level, the stereo matching method based on superpixel segmentation makes the iteration convergence faster and avoids huge redundant computations. In the coarse-to-fine matching scheme, we propose disparity constraint and 3D normal vector constraint between adjacent levels through which the disparity map and 3D normal vector map at a coarser level are used to restrict the search range of disparity and normal vector at a fine level. The experimental results with the Chang’e-3 rover dataset and the KITTI dataset show that the proposed stereo matching method is efficiently and accurately compared with the state-of-the-art 3D labeling algorithm, especially in low-texture or textureless regions. The computational efficiency of this method is about five to six times faster than the state-of-the-art 3D labeling method, and the accuracy is better.
Funder
the National Nature Science Foundation of China under Grant
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献