Affiliation:
1. Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
2. University of Chinese Academy of Sciences, Beijing 101408, China
Abstract
Stereo matching technology, enabling the acquisition of three-dimensional data, holds profound implications for marine engineering. In underwater images, irregular object surfaces and the absence of texture information make it difficult for stereo matching algorithms that rely on discrete disparity values to accurately capture the 3D details of underwater targets. This paper proposes a stereo method based on an energy function of Markov random field (MRF) with 3D labels to fit the inclined plane of underwater objects. Through the integration of a cross-based patch alignment approach with two label optimization stages, the proposed method demonstrates features akin to segment-based stereo matching methods, enabling it to handle images with sparse textures effectively. Through experiments conducted on both simulated UW-Middlebury datasets and real deteriorated underwater images, our method demonstrates superiority compared to classical or state-of-the-art methods by analyzing the acquired disparity maps and observing the three-dimensional reconstruction of the underwater target.
Funder
National Key R&D Program of China