Object tracking algorithm for unmanned surface vehicle based on improved mean-shift method

Author:

Xiang Zuquan12,Tao Tao12,Song Lifei12ORCID,Dong Zaopeng12ORCID,Mao Yunsheng12ORCID,Chu Shixin12,Wang Hanfang3

Affiliation:

1. Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Wuhan, People’s Republic of China

2. Transportation School, Wuhan University of Technology, Wuhan, People’s Republic of China

3. Wuhan Vocational College of Software and Engineering, Wuhan, People’s Republic of China

Abstract

The unmanned surface vehicle has the characteristics of high maneuverability and flexibility. Object detection and tracking skills are required to improve the ability of unmanned surface vehicle to avoid collisions and detect targets on the surface of the water. Mean-shift algorithm is a classic target tracking algorithm, but it may fail when pixel interference and occlusion occur. This article proposes a tracking algorithm for unmanned surface vehicle based on an improved mean-shift optimization algorithm. The method uses the self-organizing feature map spatial topology to reduce the interference of the background pixels on the target object and predicts the center position of the object when the target is heavily occluded according to the extended Kalman filter. First, a self-organizing feature map model is built to classify pixels in a rectangular frame and the background pixels are extracted. Then, the method optimizes the extended Kalman filter solution process to complete the prediction and correction of the target center position and introduces a similarity function to determine the target occlusion. Finally, numerical analyses based on a ship model sailing experiment are performed with the help of OpenCV library. The experimental results validated that the proposed method significantly reduces the cumulative error in the tracking process and effectively predicts the position of the target between continuous frames when temporary occlusion occurs. The research can be used for target detection and autonomous navigation of unmanned surface vehicle.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3