Fault diagnosis in autonomous underwater vehicle propeller in the transition stage based on GP-RPF

Author:

He Jiayu,Li YeORCID,Li Yueming,Jiang YanqingORCID,An Li1

Affiliation:

1. Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin, China

Abstract

Propellers are one of the key parts on the autonomous underwater vehicles. When adopting the conventional particle filter to estimate the degree of fault, based on the status given by the sensors, the diagnosis value is not always satisfactory in the transition stage (as it accelerates substantially). The diagnosis value is relatively larger than it is in the cruising stage, and this might weaken the ability to classify using the fault diagnosis method. This article proposes a new fault diagnosis method combining the grey prediction and rank particle filter method. The main improvements include two aspects: status input prediction and thrust loss trend analysis. The status input into the rank particle filter is predicted by the grey prediction method, to meet the condition that the thrust loss estimation does not change quickly when the control signal changes drastically. Subsequently, the control signal change rate is combined to analyse the thrust loss change trend. This improvement reduces the diagnosis value under normal conditions and enlarges the ratio between faulty and normal conditions. Simulation experiments are carried out to verify the performance of the proposed algorithm. The results show that the proposed method could reduce the thrust loss estimation error and enlarge the ratio of diagnosis value between faulty and normal conditions, providing basis for the following operation.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Fault Tolerant Control of Unmanned Underwater Vehicles;Artificial Intelligence and Data Science Based R&D Interventions;2023

2. A fault diagnosis method for underwater thruster based on RFR-SVM;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2022-05-09

3. Review on fault diagnosis of unmanned underwater vehicles;Ocean Engineering;2022-01

4. Fault-Adaptive Autonomy in Systems with Learning-Enabled Components;Sensors;2021-09-11

5. Thruster Fault Identification for Autonomous Underwater Vehicle Based on Time-Domain Energy and Time-Frequency Entropy of Fusion Signal;Intelligent Robotics and Applications;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3