Affiliation:
1. Robotics Institute, Beihang University, Beijing, China
2. Beijing Evolver Robotics Technology Co., Ltd, Beijing, China
Abstract
This article proposes a semantic grid mapping method for domestic robot navigation. Occupancy grid maps are sufficient for mobile robots to complete point-to-point navigation tasks in 2-D small-scale environments. However, when used in the real domestic scene, grid maps are lack of semantic information for end users to specify navigation tasks conveniently. Semantic grid maps, enhancing the occupancy grid map with the semantics of objects and rooms, endowing the robots with the capacity of robust navigation skills and human-friendly operation modes, are thus proposed to overcome this limitation. In our method, an object semantic grid map is built with low-cost sonar and binocular stereovision sensors by correctly fusing the occupancy grid map and object point clouds. Topological spaces of each object are defined to make robots autonomously select navigation destinations. Based on the domestic common sense of the relationship between rooms and objects, topological segmentation is used to get room semantics. Our method is evaluated in a real homelike environment, and the results show that the generated map is at a satisfactory precision and feasible for a domestic mobile robot to complete navigation tasks commanded in natural language with a high success rate.
Funder
Natural Science Foundation of Beijing Municipality
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献