Semantic learning from keyframe demonstration using object attribute constraints

Author:

Sen Busra,Elfring Jos,Torta Elena,van de Molengraft René

Abstract

Learning from demonstration is an approach that allows users to personalize a robot’s tasks. While demonstrations often focus on conveying the robot’s motion or task plans, they can also communicate user intentions through object attributes in manipulation tasks. For instance, users might want to teach a robot to sort fruits and vegetables into separate boxes or to place cups next to plates of matching colors. This paper introduces a novel method that enables robots to learn the semantics of user demonstrations, with a particular emphasis on the relationships between object attributes. In our approach, users demonstrate essential task steps by manually guiding the robot through the necessary sequence of poses. We reduce the amount of data by utilizing only robot poses instead of trajectories, allowing us to focus on the task’s goals, specifically the objects related to these goals. At each step, known as a keyframe, we record the end-effector pose, object poses, and object attributes. However, the number of keyframes saved in each demonstration can vary due to the user’s decisions. This variability in each demonstration can lead to inconsistencies in the significance of keyframes, complicating keyframe alignment to generalize the robot’s motion and the user’s intention. Our method addresses this issue by focusing on teaching the higher-level goals of the task using only the required keyframes and relevant objects. It aims to teach the rationale behind object selection for a task and generalize this reasoning to environments with previously unseen objects. We validate our proposed method by conducting three manipulation tasks aiming at different object attribute constraints. In the reproduction phase, we demonstrate that even when the robot encounters previously unseen objects, it can generalize the user’s intention and execute the task.

Publisher

Frontiers Media SA

Reference60 articles.

1. From inverse optimal control to inverse reinforcement learning: a historical review;Ab Azar;Annu. Rev. Control,2020

2. A case study of semantic mapping and planning for autonomous robot navigation;Achat;SN Comput. Sci.,2023

3. Keyframe-based learning from demonstration: method and evaluation;Akgun;Int. J. Soc. Robot.

4. Trajectories and keyframes for kinesthetic teaching: a human-robot interaction perspective;Akgun

5. Simultaneously learning actions and goals from demonstration;Akgun;Auton. Robots,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3