Magnetic linear driving method for high-voltage direct current inspection robot

Author:

Xu Xian Jin1,Chen Hao Da1ORCID,Yang Zhi Yong1,Hu Shi Chao1,Yan Yu2

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, China

2. Hunan Province Key Laboratory of Intelligent Live Working Technology and Equipment (Robot), State Grid of Hunan Electric Power Company, Changsha, Hunan, China

Abstract

Faced with the problem of frequent slippage of the wheel-arm inspection robot in overhead high-voltage transmission lines, a magnetic linear drive method, based on high-voltage direct current (HVDC) magnetic field, is proposed: The ampere force of an enhanced HVDC magnetic field, generated by an innovatively arranged current-carrying coil, is used as the driving force for the traction robot, replacing the traditional wheel-arm driving method, thereby eliminating the slip. A physical model for the magnetic driving force is established, according to the characteristics of the magnetic field around the HVDC transmission line and the driving force requirements of the robot. The relationship between the magnetic driving force, the physical model size, and the number of coil windings is analyzed. The magnetic drive model is simulated using the COMSOL software version is 5.0. The simulation results of the magnetic drive force model are compared to theoretical calculations, proving the proposed method as correct. The magnetic drive device is constructed according to the proposed magnetic drive model and experiments are carried out. The results show that the magnetic drive device can provide enough traction to drive the robot motion, proving that the proposed magnetic linear drive method is technically feasible.

Funder

Hubei Science and Technology Support Program

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust stabilization control of live working robot under wind load based on angular momentum conservation principle;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-03-16

2. Research on obstacle climbing gait of snake‐like robot on high‐voltage cables cables;Electronics Letters;2021-08-30

3. A Novel Tunable Electromagnetic Gravity Compensator with Low Natural Frequency for Precision Assembly;2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM);2021-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3