Robust stabilization control of live working robot under wind load based on angular momentum conservation principle

Author:

Wei Jiang12ORCID,Wenhan Dai12,Gaocheng Ye12,Dehua Zou34

Affiliation:

1. Hubei Provincial Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, Hubei, China

2. Hubei Engineering Research Center for Intelligent Assembly of Industrial Detonators, Wuhan Textile University, Wuhan, Hubei, China

3. Hunan Province Key Laboratory of Intelligent Live Working Technology and Equipment (ROBOT) (State Grid Hunan Ultra-High Voltage Transmission Company), Changsha, Hunan, China

4. Live Inspection and Intelligent Operation Technology State Grid Corporation Laboratory (State Grid Hunan Ultra-High Voltage Transmission Company), Changsha, Hunan, China

Abstract

In respond to the problem that the live working robot is easy to be affected by wind load in the process of field high altitude operation, which result in robot body rolling with poor stability and low operation efficiency, a robot momentum wheel balance control method under wind load action based on the principle of angular momentum conservation has been proposed in this paper. The moment generated by the rotation of the momentum wheel is used to offset the wind load moment so as to realize the robot online balance control. Through the analysis of the influence mechanism for the live working robot on the wind load, the coupling relationship model of three kinds typical parameters namely, wind force, robot rolling angle, and momentum wheel drive moment have been established. Based on the virtual prototype size of the live working robot, the physical model of the momentum wheel device is established and the dynamic model of robot balance system under the wind load is established by Lagrange method. Finally, the disturbance environment of the robot under the wind load action in ADAMS and MATLAB-SIMULINK software, a fuzzy PID controller has been adopt to control the robot online in real time wind load. Compared with computational torque control and gravity compensation control, the simulation result show that the momentum wheel balance can reduce the rolling angle under the wind load and keep the robot in a balance posture with strong robustness. The research of this paper has important theoretical significance and practical application value for promoting the practical application of robot in actual wind load operation environment.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3