Affiliation:
1. School of Mechatronic Engineering, Xi’an Technological University, Xi’an, China
2. School of Health Services Management, Xi’an Medical University, Xi’an, China
Abstract
Binocular stereovision has become one of the development trends of machine vision and has been widely used in robot recognition and positioning. However, the current research on omnidirectional motion handling robots at home and abroad is too limited, and many problems cannot be solved well, such as single operating systems, complex algorithms, and low recognition rates. To make a high-efficiency handling robot with high recognition rate, this article studies the problem of robot image feature extraction and matching and proposes an improved speeded up robust features (SURF) algorithm that combines the advantages of both SURF and Binary Robust Independent Elementary Features. The algorithm greatly simplifies the complexity of the algorithm. Experiments show that the improved algorithm greatly improves the speed of matching and ensures the real-time and robustness of the algorithm. In this article, the problem of positioning the target workpiece of the robot is studied. The three-dimensional (3-D) reconstruction of the target workpiece position is performed to obtain the 3-D coordinates of the target workpiece position, thereby completing the positioning work. This article designs a software framework for real-time 3-D object reconstruction. A Bayesian-based matching algorithm combined with Delaunay triangulation is used to obtain the relationship between supported and nonsupported points, and 3-D reconstruction of target objects from sparse to dense matches is achieved.
Funder
Key Research and Development Program of Shaanxi
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献