Fast geometry-based computation of grasping points on three-dimensional point clouds

Author:

Zapata-Impata Brayan S12ORCID,Gil Pablo12ORCID,Pomares Jorge1,Torres Fernando12

Affiliation:

1. Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Alicante, Spain

2. Computer Science Research Institute, University of Alicante, Alicante, Spain

Abstract

Industrial and service robots deal with the complex task of grasping objects that have different shapes and which are seen from diverse points of view. In order to autonomously perform grasps, the robot must calculate where to place its robotic hand to ensure that the grasp is stable. We propose a method to find the best pair of grasping points given a three-dimensional point cloud with the partial view of an unknown object. We use a set of straightforward geometric rules to explore the cloud and propose grasping points on the surface of the object. We then adapt the pair of contacts to a multi-fingered hand used in experimentation. We prove that, after performing 500 grasps of different objects, our approach is fast, taking an average of 17.5 ms to propose contacts, while attaining a grasp success rate of 85.5%. Moreover, the method is sufficiently flexible and stable to work with objects in changing environments, such as those confronted by industrial or service robots.

Funder

Spanish Ministry of Economy, Industry and Competitiveness

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3