Non-singular terminal sliding mode control for redundantly actuated parallel mechanism

Author:

Zhang Haiqiang12ORCID,Fang Hairong1ORCID,Zou Qi2

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, China

2. Lassonde School of Engineering, York University, Toronto, Ontario, Canada

Abstract

In this article, the trajectory tracking control is developed by implementing a non-singular terminal sliding mode control for the redundantly actuated parallel mechanism system. The proposed control scheme could guarantee that the tracking errors converge to zero asymptotically. The problem of singularity with regard to conventional terminal sliding mode control scheme can be eliminated with the presented novel non-singular terminal sliding mode surface as well. The corresponding stability of the proposed control scheme has also been proved theoretically in terms of Lyapunov method. In addition, simulations and experiments are conducted for trajectory tracking to validate the effectiveness of the proposed scheme. The illustrative results demonstrate that the proposed scheme is available to solve the uncertainties and external disturbances with self-tuning in real time. Furthermore, the prominent characteristics of the presented control scheme are quick convergence, high accuracy, and high robustness, which can achieve excellent tracking performance as compared with computed torque control scheme and conventional sliding mode control scheme.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3