A feature matching and fusion-based positive obstacle detection algorithm for field autonomous land vehicles

Author:

Wu Tao1,Cui Huihai1,Li Yan1,Wang Wei1,Lui Daxue1,Shang Erke12

Affiliation:

1. Unmanned System Institution, College of Mechatronics and Automation, National University of Defense Technology, Changsha, People’s Republic of China

2. Autonomous Land Vehicle Research Center, Changsha, People’s Republic of China

Abstract

Positive obstacles will cause damage to field robotics during traveling in field. Field autonomous land vehicle is a typical field robotic. This article presents a feature matching and fusion-based algorithm to detect obstacles using LiDARs for field autonomous land vehicles. There are three main contributions: (1) A novel setup method of compact LiDAR is introduced. This method improved the LiDAR data density and reduced the blind region of the LiDAR sensor. (2) A mathematical model is deduced under this new setup method. The ideal scan line is generated by using the deduced mathematical model. (3) Based on the proposed mathematical model, a feature matching and fusion (FMAF)-based algorithm is presented in this article, which is employed to detect obstacles. Experimental results show that the performance of the proposed algorithm is robust and stable, and the computing time is reduced by an order of two magnitudes by comparing with other exited algorithms. This algorithm has been perfectly applied to our autonomous land vehicle, which has won the champion in the challenge of Chinese “Overcome Danger 2014” ground unmanned vehicle.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse Depth Line Model of LiDAR Data for Traversable Region Segmentation;Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer Engineering;2020-11-06

2. A fast calibration approach for onboard LiDAR-camera systems;International Journal of Advanced Robotic Systems;2020-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3