Optimal super-twisting sliding mode control design of robot manipulator: Design and comparison study

Author:

Al-Dujaili Ayad Q1ORCID,Falah Alaq2,Humaidi Amjad J3ORCID,Pereira Daniel A4,Ibraheem Ibraheem K5ORCID

Affiliation:

1. Department of Control and Automation Techniques Engineering, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq

2. Department of Technical Mechatronics, Technical Engineering College, Middle Technical University, Baghdad, Iraq

3. Control and Systems Engineering Department, University of Technology, Baghdad, Iraq

4. Department of Automatics, Federal University of Lavras (UFLA), Lavras-MG, Brazil

5. Electrical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq

Abstract

This article presents a tracking control design for two-link robot manipulators. To achieve robust tracking control performance, a super-twisting sliding mode control (STSMC) is derived. The stability of the system based on the proposed approach is proved based on the Lyapunov theorem. However, one problem with the designed STSMC is to properly set its parameters during the design. Therefore, it is proposed a social spider optimization (SSO) to tune these design parameters to improve the dynamic performance of the robot manipulator controlled considering STSMC. The performance of the STSMC approach based on SSO is compared to that based on particle swarming optimization (PSO) in terms of dynamic performance and robustness characteristics. The effectiveness of the proposed optimal controllers is verified by simulations within the MATLAB software. It is verified that the performance given by SSO-based STSMC outperforms that resulting from PSO-based STSMC. The experimental results are conducted based on LabVIEW 2019 software to validate the numerical simulation.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3