Adaptive dynamic programming-based controller with admittance adaptation for robot–environment interaction

Author:

Zhan Hong1,Huang Dianye1,Chen Zhaopeng2,Wang Min1,Yang Chenguang3ORCID

Affiliation:

1. Key Lab of Autonomous Systems and Networked Control, Ministry of Education, School of Automation Science and Engineering, South China University of Technology, Guangzhou, China

2. TAMS Group, Department of Informatics, University of Hamburg, Hamburg, D22527 Hamburg, Germany

3. Bristol Robotics Laboratory, University of the West of England, Bristol, UK

Abstract

The problem of optimal tracking control for robot–environment interaction is studied in this article. The environment is regarded as a linear system and an admittance control with iterative linear quadratic regulator method is obtained to guarantee the compliant behaviour. Meanwhile, an adaptive dynamic programming-based controller is proposed. Under adaptive dynamic programming frame, the critic network is performed with radial basis function neural network to approximate the optimal cost, and the neural network weight updating law is incorporated with an additional stabilizing term to eliminate the requirement for the initial admissible control. The stability of the system is proved by Lyapunov theorem. The simulation results demonstrate the effectiveness of the proposed control scheme.

Funder

National Nature Science Foundation

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3