A Robot Human-Like Learning Framework Applied to Unknown Environment Interaction

Author:

Xue Xianfa1,Zuo Lei2ORCID,Wang Ning3ORCID

Affiliation:

1. Key Laboratory of Autonomous Systems and Networked Control, School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China

2. School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China

3. Bristol Robotics Laboratory, University of the West of England, Frenchay, Coldharbour Ln, Bristol BS34 8QZ, UK

Abstract

Learning from demonstration (LfD) is one of the promising approaches for fast robot programming. Most learning systems learn both movements and stiffness profiles from human demonstrations. However, they rarely consider the unknown environment interaction. In this paper, a robot human-like learning framework is proposed, where it can learn human skills through demonstration and complete the interaction task with an unknown environment. Firstly, the desired trajectory was generated by dynamic movement primitive (DMP) based on human demonstration. Then, an adaptive optimal admittance control scheme was employed to interact with environments with the reference adaptation method. Finally, the experimental study was conducted, and the effectiveness of the framework proposed in this paper was verified via a group of curved surface wiping experiments on a balloon with unknown model parameters.

Funder

Key Technologies R&D Program of Foshan

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anthropomorphic motion planning for multi-degree-of-freedom arms;Frontiers in Bioengineering and Biotechnology;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3