Recent progress on tactile object recognition

Author:

Liu Huaping123,Wu Yupei123,Sun Fuchun123,Guo Di123

Affiliation:

1. Department of Computer Science and Technology, Tsinghua University, Beijing, China

2. State Key Laboratory of Intelligent Technology and Systems, Beijing, China

3. Tsinghua National Laboratory for Information Science and Technology, Beijing, China

Abstract

Conventional visual perception technology is subject to many restrictions, such as illumination, background clutter, and occlusion. Many intrinsic properties of objects, like stiffness, hardness, and internal state, cannot be effectively perceived by visual sensors. For robots, tactile perception is a key approach to obtain environmental and object information. Different from vision sensors, tactile sensors can directly measure some physical properties of objects and environment. At the same time, humans also utilize touch sensory receptors as an important means to perceive and interact with the environment. In this article, we present a detailed discussion on tactile object recognition problem. We divide the current studies on the tactile object recognition into three subcategories and detailed analysis has been put forward on them. In addition, we also discuss some advanced topics such as visual–tactile fusion, exploratory procedure, and data sets.

Funder

National Key Project for Basic Research, China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3