Enhanced robotic tactile perception with spatiotemporal sensing and logical reasoning for robust object recognition

Author:

Mao Qian1ORCID,Zhu Rong1ORCID

Affiliation:

1. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University , Beijing 100084, China

Abstract

Since tactile sensing provides rich and delicate sensations, touch-based object recognition has attracted public attention and has been extensively developed for robots. However, robotic grasping recognition in real-life scenarios is highly challenging due to the complexity of real-life objects in shapes, sizes, and other details, as well as the uncertainty of real grabs in orientations and locations. Here, we propose a novel robotic tactile sensing method, utilizing the spatiotemporal sensing of multimodal tactile sensors acquired during hand grasping to simultaneously perceive multi-attributes of the grasped object, including thermal conductivity, thermal diffusivity, surface roughness, contact pressure, and temperature. Multimodal perception of thermal attributes (thermal conductivity, diffusivity, and temperature) and mechanical attributes (roughness and contact pressure) greatly enhance the robotic ability to recognize objects. To further overcome the complexity and uncertainty in real-life grasping recognition, inspired by human logical reasoning “from easy to hard” in solving puzzles, we propose a novel cascade classifier using multilayered long short-term memory neural networks to hierarchically identify objects according to their features. With the enhanced multimodal perception ability of tactile sensors and the novel cascade classifier, the robotic grasping recognition achieves a high recognition accuracy of 98.85% in discriminating diverse garbage objects, showing excellent generalizability. The proposed spatiotemporal tactile sensing with logical reasoning strategy overcomes the difficulty of robotic object recognition in complex real-life scenes and facilitates its practical applications in our daily lives.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3