A gain-scheduling control strategy and short-term path optimization with genetic algorithm for autonomous navigation of a sailboat robot

Author:

dos Santos Davi Henrique1,Goncalves Luiz Marcos Garcia12ORCID

Affiliation:

1. Graduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal, Brazil

2. Graduate Program in Computer Science, Federal Fluminense University, Niterói, Brazil

Abstract

The development of a navigation system for autonomous robotic sailing is a particularly challenging task since the sailboat robot uses unpredictable wind forces for its propulsion besides working in a highly nonlinear and harsh environment, the water. Toward solving the problems that appear in this kind of environment, we propose a navigation system which allows the sailboat to reach any desired target points in its working environment. This navigation system consists of a low-level heading controller and a short-term path planner for situations against the wind. For the low-level heading controller, a gain-scheduling proportional-integral (GS-PI) controller is shown to better describe the nonlinearities inherent to the sailboat movement. The gain-scheduling-PI consists of a table that contains the best control parameters that are learned/defined for a particular maneuver and perform the scheduling according to each situation. The idea is to design specialized controllers which meet the specific control objectives of each application. For achieving short-term path-planned targets, a new approach for optimization of the tacking maneuvering to reach targets against the wind is also proposed. This method takes into account two tacking parameters: the side distance available for the maneuvering and the desired sailboat heading when tacking. An optimization method based on genetic algorithm is used in order to find satisfactory upwind paths. Results of various experiments verify the validity and robustness of the developed methods and navigation system.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Reference31 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of nonlinear control strategies for a fully electric high-speed passenger vessel;2023 IEEE 6th Colombian Conference on Automatic Control (CCAC);2023-10-17

2. On the Use of Autonomous Sailboats as Learning Tools in Computer Science and Engineering Undergraduate Courses;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

3. A new hybrid path planning method for the sailboat architecture wave glider in the wind field environment;Ocean Engineering;2023-09

4. 具有执行器故障和未知侧滑角的帆船有限时间路径跟踪控制;Journal of Zhejiang University-SCIENCE A;2023-09

5. Sideslip angle observation-based LOS and adaptive finite-time path following control for sailboat;Ocean Engineering;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3