Performance evaluation of deep learning approaches for fault diagnosis of rotational mechanical systems using vibration, sound, and acoustic emission signals

Author:

Praveen Kumar T1,Buvaanesh R2,Saimurugan M3,Naresh G1,Jenoris Muthiya Solomon4ORCID,Basavanakattimath Murgayya5

Affiliation:

1. Electric Vehicle Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science & Technology, Kattankulathur, India

2. Automotive Mechatronics Centre, School of Engineering, Cranfield University, Cranfield, UK

3. Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India

4. Department of Automobile Engineering, Dayananda Sagar College of Engineering, Bengaluru, India

5. Department of Mechanical Engineering, KLS Vishwanathrao Deshpande Institute of Technology, Haliyal, India

Abstract

The present study emphasizes an optimized deep learning algorithm for gearbox fault detection using vibration, sound, and acoustic emission signals. Statistical and acoustic features are extracted from these signals, and various neural network algorithms are explored. The supervised deep feed forward neural network (DFFNN) demonstrates excellent performance with vibration signals but limited accuracy with sound and acoustic emission signals. To address this, unsupervised algorithms are optimized and compared with vibration-based classification. The findings show that unsupervised neural networks, particularly the auto-encoder and stacked auto-encoder architectures, achieve improved classification accuracy by leveraging the unique characteristics of acoustic emission signals. The unsupervised models also effectively overcome the vanishing gradient problem via regularization, enhancing their training efficiency. The stacked auto-encoder, with multiple layers of encoders and decoders, reduces computation time by 40% and memory consumption. These optimized algorithms hold promise for automated fault detection systems. The auto-encoder and stacked auto-encoder, utilizing vibration, sound, and acoustic emission signals, offer enhanced classification accuracy and can facilitate real-time monitoring of rotating mechanical systems. However, further optimization is needed to maximize their performance. In a nutshell, the supervised DFFNN excels in utilizing vibration signals for fault detection, while the unsupervised models exploit the distinctive characteristics of acoustic emission signals. Future research will focus on refining these algorithms to enhance their effectiveness. Implementing these optimized deep learning approaches can lead to autonomous fault detection systems, eliminating the need for continuous human supervision.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3