Analysis of sound transmission loss characteristics of aircraft composite panel under variable temperature environment

Author:

Peng Tao1ORCID,Dong Ningjuan1,Yan Qun1

Affiliation:

1. Aviation Science and Technology Key Laboratory of Aeronautical Acoustics and Vibration Intensity, Aircraft Strength Research Institute of China, Xi’an, China

Abstract

An improved sound transmission loss (STL) experimental technique based on the sound pressure method (SPM) and acoustic box method is proposed to investigate the temperature influence on the STL of the ribbed carbon fiber reinforced plastics aircraft panel. SPM principle is given. The measurement procedure of the improved STL technique is presented and its reliability is verified. STL variable characteristics of the panel within −40°C–40°C were measured. Results showed that temperature had a significant effect on the panel’s STL. The overall STL varied nonlinearly with temperature, whereas STL exhibited a fluctuation or monotony trend at a single center frequency. Temperature variation caused changes of STL peak/dip frequencies and redistribution of stiffness-controlled, resonance-controlled, coincidence-controlled, and damping-controlled regions. The causes of the aforementioned are given. This study reveals the relationship between temperature, thermomechanical parameters and STL. The findings have applications in the design, measurement, analysis, and theoretical development of composite structure acoustics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3